Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution
نویسنده
چکیده
The temperature and salinity histories of the oceans are major environmental variables relevant to the course of microbial evolution in the Precambrian, the bage of microbesQ. Oxygen isotope data for early diagenetic cherts indicate surface temperatures on the order of 55–85 8C throughout the Archean, so early thermophilic microbes (as deduced from the rRNA tree) could have been global and not just huddled around hydrothermal vents as often assumed. Initial salinity of the oceans was 1.5–2 the modern value and remained high throughout the Archean in the absence of long-lived continental cratons required to sequester giant halite beds and brine derived from evaporating seawater. Marine life was limited to microbes (including cyanobacteria) that could tolerate the hot, saline early ocean. Because O2 solubility decreases strongly with increasing temperature and salinity, the Archean ocean was anoxic and dominated by anaerobic microbes even if atmospheric O2 were somehow as high as 70% of the modern level. Temperatures declined dramatically in the Paleoproterozoic as long-lived continental cratons developed. Values similar to those of the Phanerozoic were reached by 1.2 Ga. The first great lowering of oceanic salinity probably occurred in latest Precambrian when enormous amounts of salt and brine were sequestered in giant Neoproterozoic evaporite basins. The lowering of salinity at this time, together with major cooling associated with the Neoproterozoic glaciations, allowed dissolved O2 in the ocean for the first time. This terminated a vast habitat for anaerobes and produced threshold levels of O2 required for metazoan respiration. Non-marine environments could have been oxygenated earlier, so the possibility arises that metazoans developed in such environments and moved into a calcite and silica saturated sea to produce the Cambrian explosion of shelled organisms that ended exclusive microbial occupation of the ocean. Inasmuch as chlorine is a common element throughout the galaxy and follows the water during atmospheric outgassing, it is likely that early oceans on other worlds are also probably so saline that evolution beyond the microbial stage is inhibited unless long-lived continental cratons develop. D 2004 Elsevier B.V. All rights reserved.
منابع مشابه
A Study to determine the accuracy of satellite measurements for the salinity pattern and surface temperature of Persian Gulf using statistical method
The aim of this paper is to determine the sea surface salinity (SSS) and temperature (SST) of Persian Gulf by using the AMSU-B sensor data of NOAA-16 satellite. A multiple linear regression method was used by statistical computing software R on AMSU-B data and in-situ data. Based on the results, the correlation coefficient (R2) for salinity and temperature was 0.85 and 0.94, respectively. Also,...
متن کامل3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon
Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...
متن کاملA study of ocean thermal energy conversion in the southern Caspian Sea
Nowadays, in consideration of environmental issues and limitation of fossil fuels, there is a particular consideration of renewable energy including Ocean Energy, that can extracted going through various methods such as Wave Energy, Tidal Energy, Salinity Gradient, OTEC: Ocean Thermal Energy Conversion.Herein this research, operation of OTEC Method in Southern Caspian Sea has been discussed. Fo...
متن کاملOrigin and evolution of ore-forming fluids in the magnetite±apatite Lake Siah deposit (Bafq): Evidence of fluid inclusions and oxygen stable isotope
The Lake Siah magnetite ± apatite deposit is situated in the northeastern of Bafq and Central Iran tectonic zone. The host rock of deposit is composed from lower Cambrian volcano-sedimentary sequence that has exposed as caldera complex. The iron mineralization is as massive ore and includes magnetite and hematite which form with apatite, quartz and calcite gangue minerals. Based on fluid inclus...
متن کاملComparison of surface salinity of Persian Gulf water using field data and FVCOM numerical model
This paper investigates and estimates the surface salinity changes of the Persian Gulf using the FVCOM numerical model. Sea level salinity (SSS) is one of the important parameters in oceanographic studies. The Persian Gulf is a semi-closed and shallow sea, which is high in the Persian Gulf due to its low rainfall, salinity and water density. One of the limitations of this region is the lack of ...
متن کامل